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Protecmics studies aim at answering questions about a biclogical system by characteriz-
ing all its proteins (sce also Chapter 10), The proteins are typically characterized by
analyzing carefully chosen samples from the biological system by mass spectrometry
{i]. The mass spectrometric information should ideally be suificient to answer two
questions about each sample: what does it contain and how much? In order to answer
these questions appropriately a researcher has to face the three central problems of
mass spectrometry based proteomic research: (i) the design of the experiment to allow
for detection of proteins that ave present in low abundance in the biological system
[21; (if) the optimal use of the experimental information to allow for statistically signifi-
cant identification [3] and quantitation [4] of the profeins detected; and (jii} the accurate
assignment of the significance levels of the results [5].

‘The success in solving these three central problerns will depend on many factors ina
given experiment. We will here use different terms to describe how the approach in a given
experiment can handle the centeal problems: Success rate and relative dynamic range [2],
which aze specific to proteomnics experiments and will be defined stringently below, and
the terms sensitivity and selectivity, which originate from mathematical statistics, The sen-
sitivity is a measure of how good the method employed is at identifying a protein that is
actually present in the sample. The specificity is a measure of how good the method is
at not reporting a result when a protein is absent from the sample. The focus in this
chapter is on the question of what is in the sample, that is, identification of proteins, but
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we will first describe briefly what should be considered with respect to the information
obtained from experiments aiming at answering the question of how much there is of
different components in the sample using MS-based guantitation.

7.1. QUANTITATION

In proteomics, quantitation is typically a comparison of two biological systems, for
example, cells in a normal stafe versus cells in a (ransformed state. MS-based quanti-
tation utilizes analyses of digested extracted proteins (Fig. 7.1a). The comparison
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Figure 7.1. (s) Quantitative comparison of MS-signals from two different cell systerns can be
done by either of two basic principles: (i) stable Isolope labeling of one system followed by
mixing the systems prior to the MS-analysis and comparison of the intensities of pairs of signals
from labeled and unlabeled {(or differently labeled) ions; (i) by label-free analysis where mass
spectra are acquired separately from the systems and comparisons of signal intensities of specific
m/{z values are done between the spectra: {b) The statistical significance of ratios between signal -
intensfties from the system can be judged once the distribution of intensity ratlos for control
samples with no known systematic difference have been obtained. The significance level of a
quantitation measurement is better the smaller the overlap with the distribution for the control
samples. The significance leve! is given by the red area under the distribution curve,
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between the two systems is done either using stable isotope labeling of one of the
systems and mixing of the proteolytic peptides from the two systems prior to MS analy-
sis, or by so-called label-free analysis in which spectra are acquired separately from each
system [6]. Tt s an advantage to infroduce the stable isotope label and mix the samples as
early in the experimental protocol as possible, because experimental variation is then
minimized. In all of these approaches the intensity ratios between MS signals from
individual peptides must be determined and are employed as a measure. It is important
to determine whether it is plausible that the ratio represents a true difference between the
two systems, that is, if the result can be discerned from a result corresponding with no
difference between the systems. In order to answer that question control samples with no
biological difference hetween the systems must be analyzed and all intensity ratios com-
puted. This set of intensity ratios yields a distribution that represents the hypothesis that a
given result is random. Hence, from this distribution the p-value (significance level) of a
result (intensity ratio) from a real quantitation experiment can be computed {(Fig. 7.1h).

7.2. PEPTIDE AND PROTEIN IDENTIFICATION

The identification of peptides and proteins using MS information can be done in three
different fashions: (i) de novo sequencing, (i) library searching, and (jii) sequence
collection searching.

De novo sequencing utilizes the information from an MS-MS spectium of a peptide
isolated and fragmented in the mass spectrometer (see also Chapter 2). The spectra are
analyzed with respect to mass differences that correspond to mass values of individual
amino acids or stretches of peptide sequences. This information is employed for propos-
ing the most likely sequence of the peptide analyzed [7, 8]. Advantages of this approach
include no need for a sequence collection, allowing the sequencing of proteins from
organisms that have not yet been sequenced. The main disadvantage is the need for
excellent data quality.

Library searching compares MS-MS spectra of a peptide isolated and fragmented in
the mass specirometer to a lbrary of peptide MS-MS spectra [9-11], The analysis aims
at identifying a peptide by finding the best similarity between an M8-MS specirum and a
member of the spectrum library. This approach is very fast and sensitive, since the com-
parisons involve real spectra of observed peptides using the intensity information in
the comparison, ¥t is, however, important that only high-quality spectra are included
in the libraries. This approach does not work for analysis of peptides not already
detected, but there is a rapidly growing number of peptide MS-MS spectra in the
public domain [12-14], allowing the construction of spectrum libwaries with good
coverage for many mammals, fungi, and bacteria.

Sequence collection searching aims at identifying proteins or peptides from mass
spectrometric information and information from protein sequence collections generated
from genome sequencing. Sequence collection searching is the major approach for
protein identification and exists in two different versions: (i} peptide mass fingerprinting,
which utilizes a mass specirum of profeolytic peptides from an individual protein
digested with a specific enzyme and assumes that the proteolytic peptide masses yield




214 OPTIMIZING SENSITIVITY AND SPECIFICITY IN M$ PROTEOME ANALYSIS

a fingerprint of the protein [15, 16]. Tt is also assumed that the fingerprint can be recog-
nized when searching a set of theoretical mass fingerprints derived by computing the
mass values resulting from in silico digestion of each sequence in a sequence collection,
{ity Sequence searching using MS-MS information, where a set of mass values detecied
from a proteolytic peptide jon isolated and fiagmented in the mass specirometer is com-
pared with theoretical proteolytic peptide fragment mass values generated in silico for
each proteolytic peptide in a protein sequence collection (Fig. 7.2) [17-20].

Significance testing is important for minimizing false results. Identification using
any of the methods mentioned above involves the scoring of each comparison
between the experimental data and the model, followed by ranking of the models.
Unfortunately, there is a risk of obtaining false results, since mass values measured
are not unique for an individual peptide or peptide mass fragment (Fig. 7.3) [21]. In
analogy with what is described above for quantitation there is a need to evaluate an
identification result with respect to its statistical significance. The significance level
(p-value) of a result can be determined once the distribution of scores for false
(random) resulis is known (Fig. 7.4). Such distributions are specific for each algorithm
employed in the scoring procedure. There are three different ways of generating the
score distribution for false results: simulation [5], collecting statistics during the
search [22-27], and divect computation [3].
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Figure 7.2, Protein identification using sequence collection searching and MS/MS data of
proteolytic peptides fragmented In the mass spectrometer. Search conditions such as
fragmentation pathways and mass accuracy are specified prior to the search and in the
search procedure a computational algorithm compares the mass infarmation from the
experiment with theoretical mass infarmation obtafned by in sitico fragmentation of each
proteolytic peptide in a sequence collection. The peptides in the sequence collection are
given a score that measures the degree of matching with the experimental MS/MS
information and the peptide in the sequence collection that displays the best score is given
the highest rank and is assumed as the identification result.




7.2. PEPTIDE AND PROTEIN IDENTIFICATION 215

—_
[=]

Average # of matching peptides

S =+ N oW A GO N B ©
T v

00 1000 1500 2000 2500 3000 3500
Peplide mass

Figure 7.3. The average number of peptides matching within various mass windows {ppm) as
a function of the peptide mass {Da) for proteins from H. sapiens completely digested with
trypsin. Note that there is negligible increase in the information value {no reduction in the
number of matches) below 0.1 ppm.
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Figure 7.4. The significance level of an identification result can be determined once the
distribution of scores for false identification results is known. Score distributions for true
results can vary between experiments and are typically unknown, in contrast with the
distribution of scores for false identification results, which can be derived by various
methods (see text for details). A score that Is in a reglon with little overlap with the
distribution for false results yields a good significance level (the gray area is small).
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It is critical to optimize the experimental design and data analysis to maximize the
resulting information. Score distributions for true results vary between experiments and
typically these distributions are unknown, since it is difficult to prove that a result is true
unless the data used is synthetic or the data is from a control sample characterized with
an independent and reliable method. Tt is desirable that the score distributions for true
and false results are well separated so that the score itself can be employed as a
means for minimizing the number of false results not rejected and to minimize the
number of true results rejected (Fig, 7.4). An indirect view of the separation
between these distributions is given by a so-called ROC-curve. In the simplest form a
ROC-curve is plotted with the frequency of true results as a function of the frequency
of false results and with the data points organized so that the score becomes worse
with increasing distance from the origin of the graph. This can be slightly modified
into plotting the sensitivity versus | -- selectivity, where

# of true results not rejected
total # of true results

Sensitivity =

and

# of false results not rejected
total ## of false resuits

1 — Selectivity =

The sensitivity and the selectivity depend on the choice of algorithm. A simple way to
exarnine what influences the sensitivity and the selectivity is to employ synthetic data
and simulate protein or peptide identification. Figure 7.5a displays a ROC-curve compar-
ing peptide mass fingerprint-based identification of Saccharomyces cerevisiae proteins
using a set of PMFs generated in silico where in each PMF four mass values were cor-
related with a single protein and 16 mass values were chosen randomly. The same data
set was employed for searching the S. cerevisiae sequence collection using two different
search algorithms: algorithm 1, Probity and algorithm 2, which ranks simply based on
the number of matching mass values in each PMFE. Tt is seen in Fig. 7.5a that for
algorithm 1 there is a region along the y-axis where good scores yield only frue
results, whereas for algorithm 2, the score more or less arbitrarily indicates a true or a
false result also for the best scores. From this simulation example we learn that the sen-
sifivity and the selectivity depend on the choice of algorithm.

The sensitivity and the specificity depend on the search conditions. Fig. 7.5b indi-
cafes results from a simulation using synthetic MS-MS spectra generated in silico from
the §. cerevisiae sequence collection. Each spectrum contained 25 peptide fiagment
mass values, but only seven mass values corresponding to an individual peptide.
These spectra were employed for searching the S. cerevisiae sequence collection
using the algorithm X! Tandem in two sessions employing different search conditions.
In one session the windows for accepted mass errors of both the peptide itself and its
fragments were ten times larger than in the other session. Based on the distinct different
in the ontcome from the two sessions displayed in Fig. 7.5b we conclude that the sen-
sitivity and the specificity depend on the search conditions.
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Figure 7.5. Simulation results that elucidate how the sensitivity and the selectivity of a
proteomics experiment depend on various features: (a) The choice of algorithm. The probity
algorithm displays better sensitivity and selectivity than an algorithm that ranks strictly based
on the number of matches. (b} The search conditions. Increasing the mass window of a
search 10 times when searching with data that display small mass errors yields worse
sensitivity and selectivitry. () The quality of the data. Data with less noise yields better
sensitivity and selectivity.
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The sensitivity and the selectivity depend on the data quality. Figure 7.5¢ displays
results from a simulation employing the same data set as was used in Fig. 7.5b, together
with & simulation in which the MS-MS spectra have only five mass values corresponding
to an individual peptide (out of 25), Hence we see that the sensitivity and the selectivity
depend on the data quality.

7.3, SUCCESS RATE AND RELATIVE DYNAMIC RANGE

We have already concluded that the data quality is an issue for the sensitivity and the
selectivity for protein identification in MS-based proteomics experiments. A related
issue is that we do not acquire data for all the proteins actually present in the sample.
The reason for this is that there is a discrepancy between the experimental dynamic
range and the range of profein abundances in the proteome. The bell-shaped curve
shown in Fig. 7.6a is an approximation of the protein amount disttibution measured
for yeast (S. cerevisine) using immunodetection methods [28]. The range of protein
abundances in yeast spans six orders of magnitude. It is believed that for human body
fluids the range of protein abundances is at least 10'°, The dynamic range of a mass
spectrometer can be as low as 102 (for generating signals from two substances present
in the sample at a given point in time). Proteomics researchers have realized that the
complexity and the range of protein abundance of a proteome make it necessary to
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Figure 7.6. (a) Definitions of success rate and relative dynamic range. {b) Modeal of a
proteomics experiment. {See color insert,)




7.3. SUCCESS RATE AND RELATIVE DYNAMIC RANGE 219

apply various separation protocols prior to the MS analysis, There are many options to
choose from in this respect and it is impossible to examine the merits of all combinations
experimentally. By constructing a model of a proteomics experiment and a model of the
protein abundance distribution of a proteome it is possible to use computer simulations
to examine how good a particular experimental design would be for detecting the pro-
teins of that proteome. In such simulations the quantities studied are the success rate and
the refative dynamic range (RDR), where the success rate indicates how many proteins
are detected divided by the total number of proteins in the proteome and the RDR indi-
cates how deep down into the low abundance proteins an experimental design can
manage to detect profeins (see Fig. 7.6a). The experimental design can be described
by a set of parameters (Fig. 7.6b) and we will here give an example of how one
feature of the sample preparation and two features of the mass spectrometer influence
the success rate and theRDR: the degree of protein separation, the MS detection limit,
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Figure 7.7. Results from model simulations showing the effect of protein separation and the
effect of MS detection limit and MS dynamic range on the success rate and the relative dynamic
range (RDR) for detection of proteins from H. sapiens tissue samples. {(a) Left; RDR as a function
of success rate when first improving the protein separation going from 30,000 proteins (1) to
300 proteins (2), then enhancing the sensitivity of the mass spectrometer from 1 fmol to 1
amol (3), and finally improving the M$ dynamic range from 102 to 10 (4), Right: The protein
abundance distribution assumed for human tissue together with the distribution of the
proteins detected for the experimental designs 1 to 4. (b) Same as in (a), but with the M$
dynamic range improved prior to improving the MS detection sensitivity. Note that the effect
of improving the dynamic range is negligible compared with the effect of improving the
detection sensitivity. {See color insert.)
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and the MS dynamic range. The top left panel of Fig. 7.7a indicates how the success rate
and the RDR vary when first improving the protein separation, then improving the MS
detection limit and finally improving the MS dynamic range. The right panel of Fig. 7.7a
shows the protein abundance distribution model employed in the simulation together
with the distribution of the proteins detected for the initial design (1), the design with
improved profein separation (2), after improving the detection limit (3), and after enhan-
cing the MS dynamic range (4). It is evident that all these three features of the exper-
imental design can influence strongly the outcome of an experiment. The way in
which design parameters are changed can, however, have a strong influence on the
result. For example, if instead of improving the protein separation, the MS dynamic
range is improved, there is no improvement of the success rate and the RDR until the
MS detection limit also is improved (Fig, 7.7b, 1-4).

7.4. SUMMARY

Computations and simulations are important tools for examining the performance of
mass spectrometry-based proteomic research. Computations are necessary for deriving
distributions for results corresponding with “no difference between the systems” for
quantitation experiments and for results corresponding with “a false result’” for identifi-
cation experiments. We have demonstrated using simulations that the sensitivity, that is,
the ability to identify a protein present in the sample, and the selectivity, that is, the
abilify to not report proteins absent from the sample, depend on three factors: (i) the
choice of protein identification algorithm (including search conditions), (i) the data
quality, and (iii} the experimental design.
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