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Selected Reaction Monitoring (SRM) is a method of choice for accurate quantitation of low-abundance
proteins in complex backgrounds. This strategy is, however, sensitive to interference from other compo-
nents in the sample that have the same precursor and fragment masses as the monitored transitions. We
present here an approach to detect interference by using the expected relative intensity of SRM transi-
tions. We also designed an algorithm to automatically detect the linear range of calibration curves. These
approaches were applied to the experimental data of Clinical Proteomic Tumor Analysis Consortium
(CPTAC) Verification Work Group Study 7 and show that the corrected measurements provide more accu-
rate quantitation than the uncorrected data.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Selected Reaction Monitoring (SRM) mass spectrometry has
increasingly been used to develop assays for precise quantitation
of low-abundance proteins in complex biological matrices [1], [2].
The technique was introduced in the late 1970s [3] for analyzing
small molecules [4], and its application for protein quantitation
has been an active research topic during the past decade. Fig. 1
below shows the schematic work-flow of SRM-MS assays for
protein quantitation. Proteins are extracted from biological samples
and enzymatically digested. Heavy-isotope versions of the peptides
of interest are added to the samples, and the mixture is analyzed by
Liquid Chromatography Mass Spectrometry (LC-MS). Most typically
a triple quadrupole mass spectrometer [5] is used for SRM assays. In
a triple quadrupole mass spectrometer, quadrupole 1 (Q1) and
quadrupole 3 (Q3) serve as mass filters for selecting precursor ions
and fragment ions with m/z values that define the transitions that
are monitored and quadrupole 2 (Q2) is used as a collision cell for
fragmenting the peptides. Because only the selected transitions
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are monitored instead of acquiring the entire tandem mass spectra,
the speed of analysis is very fast. During the sample preparation and
measurement, there is always variation in the experimental condi-
tions that is difficult to control. Therefore, isotopically labeled refer-
ence peptides [6,7] are often used as internal standards in SRM
assays in order to reduce the effects of this variation [8]. These iso-
topically labeled reference peptides are created by replacing a 4-10
atoms of '?C and '*N in a selected amino acid (e.g. Arginine, Lysine,
Valine, Isoleucine) with 3C and "N, respectively. The isotopically
labeled version of the analyte (Fig. 1) behaves identically to the ana-
lyte peptides in the different experimental steps except that in the
mass spectrometer they are distinguishable based on the masses of
the precursor and fragment ions [9-14].

Over the past decade, SRM has been the technology of choice for
accurate quantitation of selected peptides in complex biological
samples. However, the frequent occurrence of interferences is a
significant problem which causes inaccurate quantitation of
peptides [15,16] The key factor contributing to this problem is that
other components in a sample may have the same precursor and
fragment masses as the monitored transitions. The interference
problem only gets worse with some of the newer strategies that
attempt to collect fragmentation information on all peptides
simultaneously by using wider isolation windows that allow scan-
ning of the mass range of interest in a data independent fashion
[17-20]. With the current generation of AB Sciex time-of-flight
instruments, the smallest size of isolation window that can be
accommodated in these data independent fragmentation strategies
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Fig. 1. Schematic work flow of quantitation by SRM coupled with stable isotope
dilution (SID). The heavy labeled peptides are shown in red and the light ones in
blue.

is approximately 20-25Da [18] - in most such cases many
peptides will be isolated and fragmented together, and new soft-
ware is needed for effective analysis of these mixed spectra. The
Thermo Scientific Orbitrap-based Q Exactive now allows the use
of discontinuous isolation windows (e.g. 5 x 4 Da windows). If
the these 5 discontinuous windows are selected at random, each
window will be grouped with different windows each time, and
this makes it is possible to deconvolute the mixed spectra [21]
more easily. The advantage of these data independent acquisition
methods that use wide isolation windows is that they enable data
collection without making decisions during data acquisition, thus
making the measurements more versatile. However, the price paid
for this versatility is an increase in potential interferences.

Currently, manual inspection is typically used to identify the
interferences. To address the time-intensive and error-prone
nature of manual inspection, we have developed an algorithm to
automatically detect and correct the interference using the
expected relative intensity of SRM transitions. Previous studies
[11,15,22,23] have devised methods to detect interferences in
SRM assays. In one of these methods, AuDIT [15], the relative ratio
of the analyte and the relative ratio of stable isotope-labeled inter-
nal standard are compared to detect interference, and the method
requires the use of a stable isotope-labeled internal standard. The
novel aspects of the present approach include that it can be applied
to experiments where stable isotope standards are not used. Our
method detects outliers in the relative intensity of SRM transitions
and automatically detect the linear range of the measurements to
detect inferences, which can be easily understood and imple-
mented compared with using multiple properties of SRM in the
algorithm. The threshold for the outliers were determined by com-
putational simulation.

2. Materials and methods
2.1. Experimental data

The experimental data were taken from CPTAC Verification
Work Group Study 7 [16] (http://cptac.tranche.proteomecom-
mons.org/study7.html). This data set contains results from a
multi-laboratory study designed to assess the performance of
SRM assays. Eight laboratories measured 10 peptides in human
plasma in the concentration range of 1-500 fmol/pl, and corre-
sponding stable isotope labeled internal standard peptides were

added to each sample. Three SRM transitions for each peptide were
monitored. Each analysis was repeated 4 times at each laboratory.
Fig. 2 shows examples of experimental data for two peptides: (A) a
peptide with no apparent interference (i.e. for all transitions the
measured and actual concentrations are close), and (B) a peptide
with interference in one of its monitored transitions (i.e. the mea-
sured concentrations are higher than the actual concentrations,
especially for low concentrations).

2.2. Interference detection

In the absence of interference, the relative intensity of different
transitions for a peptide is a property of the peptide sequence and
the mass spectrometric method (the energy and method of frag-
mentation and the analysis time), and it is independent of peptide
concentration. Therefore, we use the relative intensities of transi-
tion to detect interference. In Fig. 3 the relative intensities are
shown for the two peptides in Fig. 2. In the absence of interference,
the ratios are constant, with increasing noise at lower amounts. In
contrast, when there is interference for one transition, the corre-
sponding ratios deviate from the expected (constant) ratios. Based
on these observations, an approach was developed to detect the
interference by comparing the ratio of the intensity of pairs of tran-
sitions with the expected ratio from which a Z-score for the devi-
ation is calculated:

7, = maxz; = max L/ (1)
i#j i#j Oji

where J; is the measured log intensity of transition j, I; is the mea-

sured log intensity of transition i, rj; is the expected transition ratio,

which is equal to the median of transition ratios from the measure-

ments of all different concentrations of one peptide and gj; is the
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Fig. 2. Experimental data: The measured concentration as a function of the actual
concentration for two different peptides with three transitions and 4 technical
replicates. The three transitions are shown as blue circles, black squares, and red
triangle for transitions tr1, tr2, and tr3, respectively. (A) Example of a peptide with
no interference. (B) Example of peptide with interference in transition one.
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Fig. 3. Relative intensities of transitions: The relative intensity as a function of the
actual concentration for two different peptides with three transitions and 4
technical replicates (same peptides as in Fig. 2). The three ratios are shown as
yellow circles, blue squares, and red diamonds for transitions tr2/tr1, tr3/t1, and
tr2/tr3, respectively. (A) In the absence of interference, the ratios are constant, with
increasing noise at lower concentrations. (B) With interference in one transition,
the corresponding ratios deviate from the expected constant ratios.
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standard deviation of relative intensities calculated from the four
repeated analyses for each concentration of samples of each pep-
tide. Z;; represents the number of standard deviations that the ratio
between the intensities of transitions j and i deviate from the ex-
pected transition ratio. If interference occurs to transition i, it will
cause an increase in I;. Hence, the worse interference is, the larger
Z;i is. The maximum function guarantees that the transition which
has the largest interference is detected. A transition is considered
to have no interference only when it does not have outliers of inten-
sity ratios, i.e. Z; is smaller than a threshold Z,.

2.3. Threshold estimation

To maximize the accuracy of quantitation, a threshold, Zy,
needs to be selected which balances the need for removal of inter-
ference with the need for retaining data to obtain sufficient statis-
tics. Computer simulations were used to investigate the effect on
the quantitation of the noise and the interference detection thresh-
old. It was assumed that the data set had no interference but did
have noise. The expected relative intensity of the transitions for
the sample was set to be 1:1:1 and the relative noise was assumed
to be 0.2 and normally distributed. 10,000 simulations were exe-
cuted by adding noise to transitions randomly based on the noise
rate. Interference detection was performed on the simulated data
(even though there was no interference but only noise). Fig. 4 be-
low shows the results of computer simulations using the approach
from Section 2.2 above that detects interference by measuring the
deviation of the intensity ratios of transitions from the expected
ratios. Zy, equal to infinity corresponds to no interference detection
(black curve with centroid equal to zero since there is only noise
and no interference). If a low threshold (e.g. Zy, =0) is applied,
the distribution will be distorted since high intensity values are
selectively removed. As the value of Z;, is increased from O to larger
numbers, the distortion of the distribution decreases (Fig. 4A) and
the centroid (Fig. 4B) moves closer to zero. In Supplementary
Fig. 1.1 (http://fenyolab.org/data/12_bao_methods/12_bao_meth-
ods_suppl_figl.pdf), more noise ratios and relative intensities are
simulated. The three noise ratios: 0.2, 0.4 and 0.6 are colored and
shaped differently. The simulation shows the centroid and width
of corrected relative error distributions as different thresholds
are selected under the assumption that there is no interference.
The result is consistent with Fig. 4. Supplementary Figs. 1.2-1.7
show the effect of selecting different interference removal thresh-
olds when there is both noise and interference. Based on these sim-
ulations, an interference detection threshold corresponding to two
standard deviations of the noise was selected as a reasonable
trade-off between interference detection sensitivity and specificity.

2.4. Linear range detection

In cases when a calibration curve has been obtained for an SRM
assay it is useful to automatically find the linear range of the assay.
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Fig. 5. Example of peptide where the concentration dependence deviates from
linear for low concentrations. (A) Intensities of transitions. (B) Relative intensities of
transitions.

Deviation from linear dependence at low amounts is usually
caused by increase in the uncertainty of the measurements when
the limit of quantitation is approached, or that the peptide studied
is already present in the matrix at low amounts. At high amounts,
saturation can cause deviation from linear behavior. Fig. 5A shows
an example where the measurements at low amounts deviate from
the actual concentrations, probably because of the presence of the
peptide in the matrix at low amounts. In this case the measure-
ments of all three transitions shift from the diagonal, and Fig. 5B
shows that the relative intensities of transitions are almost con-
stant on the low concentrations side. Hence, it is a different type
of interference that cannot be detected using the method described
in Section 2.2. To address this problem, we developed an algorithm
to automatically detect the linear range of a calibration curve.

It is assumed that a data set ® = {(x,y)}|xeactual_conc,ye
measured_conc} where actual _ conc represents the set of log base
2 of actual concentrations, and measured _ conc represents the
set of log base 2 of measured concentrations. First, three elements
are selected from @ and fitted to a linear function f(x) = kx + b to
determine the slope, k. Second, the errors for all the three which
represents the deviation between the slope of linear range and
the expected line x = y are calculated using formula (2) below.

Error(x) =k —1 (2)

If the error of the three elements are all smaller than a set
threshold (here selected to be 30%), an attempt is made to elongate
the linear range by moving one element forward in the set ® and
calculate the linear regression for the next three elements. The lin-
ear range will be extended until no more elements can be added
and all the data in ® have been tested. Finally, the algorithm re-
turns the longest linear range.

2.5. Implementation

Data preprocessing, interference detection, and linear range
detection were programmed in Perl (perldoc.perl.org) on a Win-
dows platform. Statements of R [24] (a statistical programming
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Fig. 4. Simulation for interference detection threshold. (A) Relative error distributions for threshold Zy, = oo, Zy, =0, Zin, = 1 and Zy, = 2, respectively. (B) The distribution

centroid as a function of threshold.
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Fig. 6. Correction of interference and linear range detection. Uncorrected (blue circles) and corrected (red triangles) measurements, calculated by averaging over the
transitions and the technical replicates for the three example peptides from Fig. 2A and B and Fig 5A. In the corrected data, the transitions with interference were removed
and the peptide quantity was calculated using only the transitions without interference. The blue dotted line and the red solid line show the linear range of uncorrected and

corrected measurements, respectively.

language) were called from Perl in order to plot the data. After
obtaining the necessary data and the required data format from
the preprocessing step, the transition ratios for the measurements
of each peptide from each laboratory were calculated. Based on the
algorithm of Section 2.2, outliers of the transitions ratios were
found. The measurements were corrected by removing the transi-
tions with interference and the peptide quantity was calculated
using only the transitions without interference, and subsequently
the linear range detection algorithm was applied to the data.

3. Results and discussion

3.1. Results of the interference detection and correction approach
applied to experimental data

The method was applied to the CPTAC study Verification Work
Group Study 7 data to detect and correct interference (Fig. 6 and
Supplementary Fig. 2http://fenyolab.org/data/12_bao_methods/
12_bao_methods_suppl_fig2.pdf). Fig. 6 shows three examples of
the performance of our interference detection and correction
method with regard to three aspects: measurements without
interference are not distorted and are left uncorrected (Fig. 6A);
interference can be detected and corrected (Fig. 6B); and the linear
range can be detected (Fig. 6C).

3.2. Overcorrection when the estimated standard deviation is low

Because the standard deviation, o, in Eq. (1) is estimated using
technical replicates, this estimation can sometimes be too low, and
lead to overcorrection and rejection of good measurements. Fig. 7A
shows an example in which the measurements at the highest con-
centrations were all flagged as incorrect by our interference detec-
tion method, because the estimation of the standard deviation of
the measurements for the highest concentration was too low;
hence, the Z-score was bigger than the threshold, and all transi-
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Fig. 7. (A) Example of a peptide where the variation of relative transitions is very
small between the technical replicates at high concentrations. (B) The frequency of
standard deviation values for an example of peptide.

tions were rejected. To overcome this problem of underestimating
the standard deviation, we introduce a minimum allowable value
for the standard deviation, which is a property of the instrumenta-
tion used and the experimental design. To find an appropriate min-
imum value for these experiments, the standard deviations of the
four technical replicates were studied. Fig. 7B shows the frequency
distribution for the standard deviation, and the minimum was
selected to be 0.02 so that 95% of the standard deviation measure-
ments were higher. This choice of minimum removed the false cor-
rections due to underestimation of the standard deviation for the
whole data set, but it did not affect the capability of the algorithm
to detect interference.

4. Conclusions

In conclusion, we presented a straight-forward method for
detection and correction of interference that uses the expected rel-
ative intensity of SRM transitions, and an estimation of the noise
from measurements of technical replicates. Computer simulations
were used to select the optimal interference detection threshold. In
addition, an algorithm to automatically detect the linear range of a
calibration curve was developed and combined with the method
for interference detection. Information about the interferences
can be used either to correct or to reject measurements, yielding
a straightforward strategy that improves SRM quantitation. The
tool for detecting and correcting interference in SRM analysis is
freely available http://fenyolab.org/tools/srm-interference/.
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